Min-cost Vaccination

Lecture 1 of IRC, LIAM, Fields-CQAM MfPH Training Series

Sanafi, NSERC, YorkU

Professor Michael Chen

2020-03-09

@York University

Model without vaccination

\begin{align*} S^{\prime}(t) &=& -\beta I S\\ I^{\prime}(t) &=& \beta I S - \gamma I \tag{2.1}\\ R^{\prime}(t) &=& \gamma I\\ S(0) &=& S_0\\ I(0) &=& I_0\\ R(0) &=& 0\\ \end{align*}

Relative removal rate

We divide the second equation of (2.1) by the first to get

\begin{align*} \frac{dI}{dS} &=& -1 + \frac{\rho}{S} \tag{2.2}\\ \end{align*}

where

\(\rho = \frac{\gamma}{\beta}\) is the relative removal rate.

Solution

(2.2) has the following solution form:

\begin{equation*} S + I - \rho\ln(S) = C \end{equation*}

where the constant \(C=1 - \rho\ln(S_0)\) since \(S_0+I_0=1\), hence

\begin{equation*} I = 1 - S + \rho\ln(S/S_0) \tag{2.3} \end{equation*}

SI-plane

./images/fig1.png

Peak infection

From (2.3) it is clear at \(S=\rho\) the infection achieves its peak:

\begin{equation*} I_{max} = 1 - \rho + \rho\ln(\rho/S_0) \end{equation*}

Asymptotics

Isolation effect

Vaccination effect

Qualitatively vaccination is equivalent to jump from one solution path in Fig.1 to a lower solution path.

Temporal views

\begin{align*} \frac{dS}{dt} &=& -\beta S(t) [1-S(t)+\rho \ln (S(t)/S_0) ]\\ I(t) &=& 1 - S(t) + \rho \ln (S(t)/S_0)\\ R(t) &=& -\rho \ln [S(t)/S_0]\\ \end{align*}

I(t)

./images/fig5.png

R(t)

./images/fig6.png

S(t)

./images/fig4.png

Model with vaccination

\begin{align*} S^{\prime}(t) &=& -\beta I S - \alpha\\ I^{\prime}(t) &=& \beta I S - \gamma I \tag{3.1}\\ R^{\prime}(t) &=& \gamma I\\ V^{\prime}(t) &=& \alpha \\ S(0) &=& S_0\\ I(0) &=& I_0\\ R(0) &=& 0\\ V(0) &=& 0\\ \end{align*}

V(t)

./images/fig7.png

Vaccination function

Consider a finite control period \(T=15\Delta\) instead of \(\infty\), and a stepwise vaccination function instead of a continuous one,

\begin{align*} \alpha(t)= M_j d \;\; \forall t \in \small{\left[ j\Delta, (j+1)\Delta \right) } \\ M_j \in \small{\{0,\cdots,9\}}, j \in \small{\{0,\cdots,14\}} \tag{5.1} \end{align*}

Control requirements

\begin{align*} \forall t \in [0,T] \\ R(t) + I(t) & \le & A\\ I(t) & \le & B\\ \end{align*}

Optimization model

\begin{align*} \min_{\substack{M_j \\ j=1,\cdots,14}} & \sum_{j=1}^{14} (M_j d \Delta)^2\\ & R(j\Delta) + I(j\Delta)\le A \;\;\forall j\\ & I(j\Delta) \le B \;\; \forall j\\ & M_j \in \small{\{0,\cdots,9\}} \end{align*}

Typical Solution

\begin{equation*} [3,2,2,2,2,1,2,1,0,0,0,0,0,0] \end{equation*}

Table 1

./images/tab1.png

Dynamic programming

State transition \(\Gamma(\cdot)\) is given by the first two equations and initial conditions in (3.1)

\begin{equation*} (S_{j+1}, I_{j+1}) = \Gamma (S_j,I_j,M) \end{equation*}

\(\Gamma(\cdot)\) shall be rounded to integer in DP after Runte-Kutta.

Terminal reward

Terminal reward function involves only one forward step,

\begin{equation*} f_1(S,I) = \min_{M \in \small{\{0,\cdots,9\}}} C(M) \tag{A.1} \end{equation*}

where \(C(M) = (M d \Delta)^2\) if feasible else \(\infty\)

Bellman equation

\begin{equation*} f_{k+1}(S,I) = \min_{M \in \small{\{0,\cdots,9\}}} \left( C(M) + f_k(\Gamma(S,I,M)) \right) \tag{A.2} \end{equation*}

Memoization technique

#setup, see Table 1
T   = 14
rho = 0.1

@functools.lru_cache()
def Gamma(S,I,M): #state transition
    pass          #Runte-Kutta Eq 3.1

@functools.lru_cache()
def f(k,S,I):     #cost table
    if k==1:
        pass      # (A.1)
    else:
        pass      # (A.2)

I0 = 0.02
f(14, 1 - I0, S0) # seek optimal schedul at I0

I0 = 0.04
f(14, 1 - I0, S0) # seek optimal schedule at I0

Optimal solution

\begin{equation*} f_{14}(S_0, I_0) \end{equation*}

Cost

./images/fig3.png

Table 1

./images/tab1.png

Discretization error

With the found control, we may

One might need to adaptively refine the grid and start over.

Questions

./images/question.jpg

Homework

Next lecture

We will solve the problem as a continuous optimal control problem by collocation, single shooting and multiple shooting algorithms.

Bibliography

  1. HERBERT W. HETHCOTE AND PAUL WALTMAN, Optimal Vaccination Schedules in a Deterministic Epidemic Model, MATHEMATICAL BIOSCIENCES 18, 365-381 (1973)